
Percolation cluster shapes in two and three dimensions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1987 J. Phys. A: Math. Gen. 20 6501

(http://iopscience.iop.org/0305-4470/20/18/046)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 05:19

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/20/18
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J .  Phys. A: Math. Gen. 20 (1987) 6501-6504. Printed in the U K  

Percolation cluster shapes in two and three dimensions 

Joseph P Straley: and Michael J Stephen$ 
7 Department of Physics and Astronomy, Unnertity of Kentucky, Lexington, KY 40506, 
USA 
T Department of Physics, Rutgers University, Piscataway, NJ  08543, USA 

Received 31 December 1986, in final form 28 April 1987 

Abstract. The asymmetry and prolateness of site percolation clusters and lattice animals 
are determined for two and three dimensions, with agreement with E expansion results. 

Recently the shapes of polymers, clusters in percolation-type lattice models and lattice 
animals (related to branched polymers in solution) have been investigated [ 1-31. Such 
shapes are of interest for polymers in solutions where they affect the rotational relaxation 
and flow properties. Family et a1 [ 11 have performed Monte Carlo sampling to study 
the shapes of bond percolation clusters and lattice animals at the percolation threshold. 
Universal amplitude ratios measuring the asymmetry and degree of prolateness were 
introduced for polymers by Aronovitz and Nelson [ 2 ]  and calculated in F expansion 
near four dimensions. Similar amplitude ratios were introduced by Aronovitz and 
Stephen [3] for lattice percolation clusters and lattice animals and were calculated in 
E expansion near six and eight dimensions respectively. The E expansion is not expected 
to be reliable in two or three dimensions. 

We have studied the asymptotic shape of site percolation clusters and lattice animals 
in two and three dimensions by exact enumeration of all clusters of K sites (with 
K S 15 in 2~ and K S 11 in 3 ~ )  on the square and cubic lattices. For each cluster we 
determined: 

(i) the perimeter P of the cluster, which is the number of sites in contact with the 
cluster that do not belong to it, 

(ii) the moment of mass tensor 

Ma,  = c ( rra - r, 1 ( r,p - r p  ) (1) 

(iii) the traceless tensor Q = M -AI, where A = (1/ D )  Tr M is the average eigen- 
value of M. 

From these terms, several cluster anisotropy quantifiers were formed. These 
anisotropy quantifiers were accumulated for each value of K and P; the sums were 
used to construct generating functions corresponding to each quantifier F :  

1 

{ F } , =  C F K x K - ' ( l - x ) '  ( 2 )  
cIus1crs 

for the percolation problem, and 

{ F } , =  1 F K X ~ - '  
clusiers 

for the animals problem. 

(3) 
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In the percolation context we may readily interpret x as being the density of sites, 
and { F } ,  the average value of F :  in particular if F is a constant, {F} ,= F for any 
x < x,. The interpretation of { F } ,  is not so simple; even { l}, depends on x and is 
singular for some sufficiently large x,. However, we find that for the anisotropy 
quantifiers to be studied, the functions { F } J {  l}a are non-singular and can be used to 
determine the asymptotic shape of a cluster. 

Since we can only enumerate small clusters, we only know the small x behaviour 
of { F } .  To extrapolate the behaviour to x,, we wrote these functions as power series 
in x, expanding the (1  -x)' factor in {F} , .  These series, and series resulting by 
synthetically dividing one series by another, were extrapolated to x, by means of Pad6 
approximants. The cluster shape calipers we studied are not singular at x,, and the 
Pade approximants generally had no poles near x,. As a check on the accuracy of the 
method we also studied the logarithmic derivative of { K } ,  which should have a pole 
at x,; in this case the approximants had poles reasonably close to the x, values found 
by others (table 1). 

The asphericity of a cluster is measured by the quantity 

D {Tr Q'} 
D-1 {(Tr M ) ' } '  

A D = -  

Written in terms of the eigenvalues A ,  of M ,  this becomes 

(4) 

in two dimensions. This quantity would be small if the most common clusters were 
isotropic. 

Table 1. Anisotropy quantifiers as  determined here and  in other work. The numerical 
uncertainties quoted reflect the variability in different Pade approximants to the series; the 
systematic errors inherent in using a short  series might be ten times larger. 

2D ZD 3D 3D 

percolation animals percolation animals 

0.58 rt 0.01 
0.592 74" 
0.280 k 0.005 

0.38 * 0.01 
0.376 
0.141 *0.001 

0.346 I 0.006 
0 .40 i0 .01  
0 

0 
0 

0.246*0.001 
0.246 15" 
0.3 18 r 0.001 

0.466 * 0.002 
0.385 
0.192 * 0.002 

0.280 * 0.003 
0.29 rt 0.01 
0 

0 
0 

0.31 rt 0.01 0.120 IO.001 
0.3117h 0.120' 
0.37 2 0.03 0.440 * 0.002 

0.30 * 0.03 
0.3 12 0.326 
0.191 *0.005 0.24*0.01 

0.390 * 0.003 

not determined 
not determined 

0.12 * 0.01 0.132rt0.001 

0.23 f 0.02 
0.164 0.164 

0.27 * 0.01 

' From [ 5 ] .  
From [6]. 

' [ 7 ]  gives l /x,  = 8.35 rt0.04. 
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Family et a1 [ l ]  study a different quantity 

R = {Atntn/Amax}/{1} (6) 

and, for the purposes of comparison, we constructed this quantity in two dimensions. 
In two dimensions {Tr Q3}/{(Tr M ) ' }  is identically zero; in three dimensions we 

can define 

This quantity will be positive if the clusters are prolate in shape, and negative if they 
are oblate. 

Family et a1 analyse their data in a different way. They add together A,,,/A,,, for 
all clusters of K sites, for K ranging u p  to 15; and then divide by the number of 
clusters of K sites, getting the average value of A m , J A m a Y  for the restricted ensemble 
of K-site clusters. This average is then plotted against K-O (for a suitable value of 
e) .  Our result for (A,,,JAmax) is not too different from theirs. 

These anisotropy quantifiers are independent of the orientation of the principal 
axes of the cluster, which might be arbitrarily oriented; thus anisotropy of these sorts 
does not imply anisotropy of the site-site correlation function, but rather reflects the 
spontaneous fluctations in shape about the expected isotropic shape. Lam [4] has 
studied the site-site correlation function in two dimensions, and found that for small 
clusters the distribution has square but not circular symmetry (so that directions parallel 
to the lattice axes are distinct from diagonal directions) and that for large clusters the 
site-site correlation becomes circularly symmetric. This may be regarded as a con- 
sequence of the breaking of rotational symmetry by the lattice; in the limit of large 
clusters the asymmetry is too weak to have any effect. 

In order to determine the effect on our results of the small cluster anistropy 
discovered by Lam 'we constructed larger clusters. We used the Alexandrowicz [8] 
method, which builds a distribution of clusters characteristic of the percolation problem 
at any site density p .  For p = 0.5 it was possible to collect data on all clusters that this 
algorithm constructed; for p = pc it was necessary to terminate the cluster construction 
process if the cluster grew too large. We chose K = 500 as the cutoff point and 
constructed 5 x lo4 clusters with 2 0 s  K s 500. 

Since we cannot construct all clusters in the ensemble close to the percolation 
threshold, we cannot (calculate { F } ,  as defined in ( 2 ) .  Instead we define for any function 
F and any K 

where the sum is restricted to the clusters having K sites, and then calculate 

For p = 0.5 we found i2 and A: to be of comparable size; however, for p = p c ,  i2( K ) 
is a decreasing function of K which for larger K is distinctly less than our estimate 
for h2. Extrapolating against K-'l4' (as recommended by Family er a1 [ l ] )  indicates 
A z ( E )  --. 0.31 (Quandt and Young [9] find similar results in an independent study). 

Our results are given in table 1. We note reasonable agreement between our results 
and previous work. Considering that the e expansions are expansions in (6-  D )  or 
(8 - D ) ,  the low-dimensionality series are in remarkably good agreement with them. 
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We conclude that percolation clusters and lattice animals are prolate and significantly 
anisotropic; ‘egg-shaped’ would be a reasonable summary of our results. 
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